Debugging midi bytes with sonification

I’m currently working on some hardware for interfacing a Raspberry Pi 3 with MIDI. You can of course use a normal USB audio interface, and there is a ready made MIDI Hat module for the Pi already – but I only need MIDI out, and it shouldn’t be a problem to come up with something simple using the GPIO pins.


(Debugging: Wrong clock rate – but we have data! I ended up debugging by sonifying the MIDI bytes with a piezo speaker)

I followed the instructions here, expanded here and updated for Raspberry Pi 3 here – and using bits of all of them I managed to get it working in the end, so I thought it would be a good idea to document it here.

The main idea is that the Raspberry Pi already contains a serial interface we can reconfigure to send MIDI bytes, rather than bolting on lots of new hardware. All you need is to free it up from its default purpose which is to allow external terminal connection and as the bluetooth interface on the Pi3. We also need to slow it right down to 1980’s MIDI baud rate. You can then connect your MIDI cable to the Raspberry Pi’s ‘TX’ pin with a little bit of buffering hardware in between. This is needed to bring it up to 5V from the Pi’s 3.3V logic output (but as they need to be Schmitt triggers perhaps an additional function is to ‘hold’ the voltage for longer). I tried a normal TTL buffer and it didn’t work – but didn’t look into this too closely. As an aside, I found a UK made IC in my stockpile:

ukchip

On the Raspbian end of the equation we need a few tweaks to set up the Raspberry Pi. Edit /boot/cmdline.txt and remove the part that says console=serial0,115200, this stops the kernel listening to the serial device. Next edit /boot/config.txt to add these lines to the bottom:

dtoverlay=pi3-miniuart-bt # disable bluetooth
init_uart_clock=39062500
init_uart_baud=38400
dtparam=uart0_clkrate=48000000

This slows the serial (UART) clock down to the right rate relative to the Pi3 clock and disables bluetooth. Due to the OS switch to systemd on Linux a lot of the documentation is out of date, but I also ran:

sudo systemctl disable serial-getty@ttyAMA0.service

In order to turn off, and stop the console serial interface from starting at boot, I’m not sure if that was required. Then it’s a case of rebooting, compiling ttymidi (which required a small Makefile change to add -lpthread to the link line). This program sets up a MIDI device accessible by ALSA, so we can then install vkeyb (a virtual midi keyboard) and connect it to ttymidi in qjackcontrol. This is a pic of the testing setup with my trusty SU10 sampler.

miditest

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>