## Tangible programming: detecting flip, rotation and id with magnets

When we started designing the pattern matrix we wanted to include the possibility of encoding more than binary (which side is up) using the magnets. In order to test this, we made the bottom row of sensors with 4 in a square – the rest only have one sensor currently (to avoid blowing the budget on hall effect sensors).

Here are some test blocks with four magnets glued on. The one at the back is easy to make as they naturally snap together edge to edge in this pattern, the closer one required superglue and lots of patience – I’m still expecting it to fire a magnet off unexpectedly at some point:

The orientation seems to work well in our tests so far, as you rotate the blocks the sensors latch from one state to the other – and it seems like they stick to their previous reading until the block is very nearly aligned straight. I’ve added some sound on the Pi to give some haptic feedback which is turning out to be very useful.

The next job was to head back to makernow make some better blocks with the magnets inside. Oliver Hatfield milled out new holes in some of our spares:

Luckily the fit is really tight so with some force the magnets can be placed inside without the need for any gluing – and they don’t rattle around at all:

The next thing was to make some visual indication of the polarity and meaning of the patterns, and show how the binary encoding changes with flipping and rotating. Andy Smith designed and laser engraved these new caps and locating rings:

The 4 bit binary codes read in clockwise order from the top left (same as the notation for tablet weaving) so rotation causes the same effect as bitwise rotate in programming – multiply/divide by 2 with overflow. There are 4 possible different configurations of magnets (which can provide block identification). Two of the configurations are mirrored on both sides but you can read rotation still, with the other two you also can tell which side is up, and one – bottom left in the photo below, can represent 8 states all by itself (flip as well as rotate).

In future we’ll make more of these with specific meanings dependant on the language we use them for and what they actually do – at this point they are for debugging/experimenting further.