Warping a 4 shaft table loom

The next stop on my exploration of loom technology for the weavingcodes project (after building a frame loom and learning tablet weaving) has been learning how to use a 4 shaft table loom. This has been kind of daunting to me, as it’s a much more modern weaving device than I’ve been working with up to now (frame looms and tablet weaving can be considered to be both neolithic digital tech). I also couldn’t really figure out much from books on the warping techniques, as it’s difficult to get the idea through images – so I had to just kind of jump in and try it.

I decided to use the double weave draft plan to start with from my last post – partly as I want to try this technique, but also it’s pretty simple warp threading for a first attempt.

double

The next step was to choose the material. A while back I bought 200gms of good quality 8/2ne cotton/linen mix which I’ve been saving for something like this. In order to calculate the amount of fabric the yarn will produce you can wrap it lightly around a ruler:

IMG_20151006_112054

This yarn is about 10 threads per centimetre, so we can use that to figure out roughly how many warp threads (or ‘ends’) to use – I decided on 160 ends in total (so ~16cm wide) comprised of the two alternating colours. I wound out two sets of 80 threads over a couple of metres, doing both colours at once to make it easier. I then attached each one to the back roller and wound them in a bit – this would have worked better later if I had used more bundles of fewer threads.

IMG_20151005_111456

You can see in the picture I’ve also bolted a “raddle” (thing with nails) on the back beam of the loom to help space out the warp threads – this is important later on. Now we come to the heddles. The threading chart is what programs this part of the loom, which in turn forms a fixed instruction set of pattern possibilities for the weave. You can see the 4 levers that operate the frames in the photo above – these essentially give us 4 bits per weft of information. 2 of the 16 possibilities are invalid – as all frames raised or lowered doesn’t provide a working fabric. Using different sequences of these 14 combinations for each weft thread, the possibilities become mathematically huge – even with a fixed warp like this.

doublethreading

Reading the frames and warp colours from the chart to provide a sequence, you hook each warp end through the eye of the heddle – this was the most time consuming part of the process.

IMG_20151005_115731

Once that is done, the reed – which is attached to the beater and used to pack down and keep the fabric evenly spaced, is threaded (or “sleyed”). The reed I used was a bit too course so I used two threads per gap – this could have done with being a bit more as it turned out.

IMG_20151006_120920

With all this done the warp ends can be attached to the front roller and the whole warp can be wound on through the heddles and back again to check the tension. Of course in practice (and as it was my first time) it actually involved a lot of tangles and swearing, and two broken warp threads, fairly easily knotted back together. The raddle was essential in helping untangle the warp threads, but I also had to fiddle around with the tension a lot, retying the knots attaching them to the rollers and using plenty of sticks (it seems you can never have too many sticks when warping a loom). This is a test that the warp is threaded correctly, with all black threads (frames 2 and 4) lifted – phew!

IMG_20151009_133825

After that we could try a little test weaving, going freestyle on the heddles.

IMG_20151009_171547

It turns out the reed is a little too wide, meaning it’s stretching the warp out as the woven fabric finds it’s true width – switching to a new one is possible without needing to do the heddles again, so we’ll see how it goes. Compared with tablet weaving, this is far more mechanised and efficient in terms of fabric production, but the flipside to that is that you lose a lot of flexibility, and the loom is less responsive to particular material properties like this.

Tangible livecoding tests in the wild, and material as type in programming

Last week I took the flotsam tangible livecoding system to my programming tutoring lesson for some first tests with the real experts. To provide some background, we started a while back with Raspberry Pi, messing around with the Minecraft API and python and we’ve recently moved on to laptops and pygame. I arrived with the system set up for the Minecraft building language, and we gave it 10 minutes or so before resuming normal activities – although it did get a bit more use during natural breaks in the lesson. Here’s a recent pic of the weaving l-system setup:

tangibleweaves

First impressions were that it was immediately playful, most of the blocks were eagerly removed and examined before we’d turned the thing on. One problem with this was that the chalk symbols rubbed off very quickly! A similarity with the Scratch programming language was also picked up on fairly soon.

A big issue was getting the connectors the right way round – this is not easy as the blocks are circular with little indication of which way is ‘up’. This could be fixed by altering the shape or cutting a little notch – learning how to manipulate them is part of the point, but right now it’s too difficult. This will also be a big problem in livecoding performance situations.

Using Minecraft, the screen was still a distraction. The connection between what’s happening in the 3D world and with the physical blocks is not obvious enough – even with the LED indicators. Also the mouse and keyboard need to be plugged in so we can move the camera around and see stuff, leading to a few too many things going on. I’m not sure how this can be solved regarding Minecraft, but indicates that a musical approach (with no screen or any other peripherals needed other than speakers) is the way to go.

Overall there is huge potential to think much more about the touch/feel of the blocks. Lots of these problems can be solved by using different shapes for different symbols (removing the need for chalk) with a clear orientation. Using different materials to provide textures and ‘feel’ in order to represent different sounds, or in terms of weaving, using the actual yarn material to represent itself is a huge area to explore.

materials

In the photo above, I’m using thick and thin blue yarn wrapped around the blocks that represent them, and tinfoil for l-system rule symbols (X, Y and Z) – this is a kind of material based type indication. Interestingly the yarn feels very different even though it looks the same in the photo. In use this results in much less checking of the block when you pick them up, as your fingers tell you what they are.

dremelling