Mongoose 2000 version 2

Mongoose 2000 version 2 is now being used in the Banded Mongoose Research Project Fieldsite on the Mweya Peninsula, in the Queen Elizabeth National Park, western Uganda.

We’ve added two new focal observations – where a single mongoose in a specific life stage is followed, and has it’s activity recorded for 20 minutes. These observations include different events that can happen (fighting or cooperating with other individuals etc). Nearly all the interfaces are shown below – the system includes adding new packs or individuals, data review and syncronisation with other tablets via the Raspberry Pi.

interfaces-s

Mongoose 2000 in the wilds of Uganda

One of our most ambitious projects: Mongoose 2000, is now up and running after 6 months of testing. This is a Raspberry Pi and Android tablet system to synchronise and store masses of data for a long running behavioral experiment recording the activities of packs of mongooses in the field site in Uganda. They broad aims of the project are to study mongoose behaviour in order to understand the evolution of society.

use

The timespan that we are working with is long, and the location – while not as remote as it could be (there is some internet access and power) required some consideration – so this was a project where we really needed to employ an appropriate technology approach which is manifested in various ways:

Open source software: means that Foam Kernow are not a bottle neck to continued development, as we do not have exclusive control over the source code (which is released into the commons). New developers can be found if required (for whatever reason) who do not need to start from nothing – this gives the research team more control and future proofing.

Use of commodity hardware: it’s likely that the hardware in use will become obsolete in this timeframe. The lifespan of android software should mean it can be installed on compatible devices for a long time, and the team can make use of advances in sensor or battery technology. The raspberry pi we are using is already an older model now, but as it’s a standard linux setup we can easily move it to other machines in the future. Currently it acts as an ‘appliance’ which just needs to be turned on, but we can add a web interface to control it from the tablet – or eventually replace it with a peer to peer syncronisation system.

The Ugandans working on the project have an healthy DIY relationship with technology, they expect to be able to repair or modify things themselves, and I’d like to figure out ways we can work with this more. The UAV toolkit project provides some indication of what can be done with programming these kinds of devices in the field. Part of the decisions on the hardware (and the design of the software, e.g. using a scheme interpreter) were to use devices that were open to a more end-user programming approach in the future.

use2

use3

Syncronising a tablet with observations previously recorded on the Raspberry Pi:

use4

Foam Kernow mini update

A short update on the things currently going on at Foam Kernow alongside the stuff I’ve been blogging about lately. We are near completion of a new version of the butterfly hunting game – this time being developed for the National Museum of Natural History in Paris, where it will be a citizen science exhibit to collect data on visitor’s perceptions of the wing patterns. A brand new Open Sauces web tool is under development as well, much conversation concerning database models for cuisines, menus, recipes, ingredients and flavours.

We’re planning our first ever biohacking workshop, in Cornwall led by the London Biohackspace. As part of that we need to construct a bunch of high power LEDs to expose yeastograms to UV light to create pictures. With all the precautions required for this (you don’t want to get too close to them), it seems like we’re constructing a giant space laser.

The beginning of the year has also been about moving long running projects on to their next stage. Mongoose 2000 has now had 4 months of parallel data collection in Uganda at the same time as their old system, and they agree by 98%, which is good enough for them to move completely over to the Raspberry Pi and android tablets. We’ve also incorporated a ton of feedback from this testing time. Symbai also has been improved ready for it’s next outing to India in May, mostly synchronisation fixes as this system needs to sync photographs and audio files as well. Also a bit of in depth reading about SQLite’s query planner has led to a dramatic speedup for both these applications.

Also in the workshop vein – this year’s Raspberry Pi Minecraft hacking workshop will be happening on April 2nd at dBsMusic in Cornwall College. Bring on the networked mayhem!

Minecraft Easter Taster2

Mongoose 2000: Group composition

I’ve recently been building the Mongoose 2000 “group composition” tool that the researchers will use for recording information about a whole pack of mongooses (and synchronise data via a Raspberry Pi providing a local wifi node) in their field site in Uganda. As I wrote a bit about before, one of the interesting things about this project is that the interface design has to focus on long term speed and flexibility over immediate ease of use. In this way it seems appropriate that it’s moving in the direction of a musical interface rather than a normal touch screen interface. The different colours in the mongoose selectors show which individuals are present and which have data recorded from them already, the screenshot below is the section where they record relationships between the adult females (at the top) and adult males that may be guarding – or pestering them (below). At the same time, they need to be able to record events that may be occurring with the pack as a whole – in this case an interaction with another pack of mongeese.

Screenshot_2014-06-26-11-34-40